Abstract
High-performance immobilized metal ion affinity chromatography was utilized to evaluate the adsorption properties of 67 synthetic, biologically active, peptides ranging in size from 5 to 42 residues. The metal ions, Cu(II), Ni(II) and Zn(II), were immobilized by iminodiacetic acid (IDA) coupled to TSK gel 5PW (10 μm). Two types of gradient elution (imidazole and pH) were used to evaluate peptide retention by the metal ions. A decreasing pH gradient and an increasing imidazole gradient eluted the peptides in similar order. IDA-Cu(II) and IDA-Zn(II) showed very similar selectivities for the peptides analyzed; however, IDA-Zn(II) displayed a weaker affinity for the peptides. IDA-Ni(II) showed a slightly different pattern of selectivity. Peptide adsorption effects contributed by the metal-free gel matrix were found to be relatively minor. The concentration and type of salt included in the mobile phase could affect the relative affinities of the peptides for the immobilized metal ions. Retention coefficients were assigned to individual amino acid residues by multiple linear regression analysis. Histidine showed the largest positive correlation with retention, followed by aromatic amino acid residues. Modified N-terminal residues resulted in negative contributions to retention. Analyses of peptide amino acid composition alone allowed prediction of peptide retention behavior on immobilized metal ion affinity columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.