Abstract

Structural Health Monitoring (SHM) is the process of damage identification in mechanical structures that encom- passes four main phases: damage detection, damage localization, damage extent evaluation and prognosis of residual life. Among various existing SHM techniques, the one based on electromechanical impedance measurements has been considered as one of the most effective, especially in the identification of incipient damage. This method measures the variation of the elec- tromechanical impedance of the structure as caused by the presence of damage by using piezoelectric transducers bonded on the surface of the structure (or embedded into it). The most commonly used smart material in the context of the present contribution is the lead zirconate titanate (PZT). Through these piezoceramic sensor-actuators, the electromechanical impedance, which is directly related to the mechanical impedance of the structure, is obtained as a frequency domain dynamic response. Based on the variation of the impedance signals, the presence of damage can be detected. A particular damage metric can be used to quantify the damage. For the success of the monitoring procedure, the measurement system should be robust enough with respect to environmental influences from different sources, in such a way that correct and reliable decisions can be made based on the measurements. The environmental influences become more critical under certain circumstances, especially in aerospace appli- cations, in which extreme conditions are frequently encountered. In this paper, the influence of electromagnetic radiation, temperature and pressure variations, and ionic environment have been examined in laboratory. In this context, the major concern is to determine if the impedance responses are affected by these influences. In addition, the sensitivity of the method with respect to the shape of the PZT patches is evaluated. Conclusions are drawn regarding the monitoring efficiency, stability and precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.