Abstract

Recently, there has been an increasing interest in using the biomechanical properties of cells as biomarkers to discriminate between normal and cancerous cells. However, few investigators have considered the influence of the growth medium composition when evaluating the biomechanical properties of the normal and diseased cells. In this study, we investigated the variation in Young’s modulus of non-malignant MCF10A and malignant MDA-MB-231 breast cells seeded in five different growth media under controlled experimental conditions. The average Young’s modulus of MDA-MB-231 cells was significantly lower (p<0.0001) than the mean Young’s modulus of MCF10A cells when compared in identical medium compositions. However, we found that growth medium composition affected the elasticity of MCF10A and MDA-MB-231 cells. The average Young’s modulus of both cell lines decreased by 10–18% when the serum was reduced from 10% to 5% and upon addition of epidermal growth factor (EGF, 20ng/ml) to the medium. Though these elasticity changes might have some biological impact, none was statistically significant. However, the elasticity of MCF10A was significantly more responsive than MDA-MB-231 cells to the medium composition supplemented with EGF, cholera toxin (CT), insulin (INS) and hydrocortisone (HC), which are recommended for routine cultivation of MCF10A cells (M5). MCF10A cells were significantly softer (p<0.002) when grown in medium M5 compared to a standard MDA-MB-231 medium (M1). The investigation of the effects of culture medium composition on the elastic properties of cells highlights the need to take these effects into consideration when interpreting elasticity measurements in cells grown in different media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.