Abstract

The aim of this study was to investigate whether a two-hit acute lung injury (ALI) model is better than a one-hit model in simulating ALI, and to evaluate the inflammatory response in the lungs in these two models using micro-positron emission tomography (microPET) with [18F]fluorodeoxyglucose (FDG). Sprague Dawley rats were divided into four groups; rats in the lipopolysaccharide (LPS; n=10) and LPS-HCl (n=10) groups were challenged by the intraperitoneal administration of 5 mg/kg LPS, while rats in the normal saline (NS; n=3) and HCl (n=10) groups received the same volume of normal saline solution. Sixteen hours following the administration, the rats in the HCl and LPS-HCl groups received an acid instillation (IT) of 0.5 ml/kg HCl (pH=1.2), while the rats in the remaining two groups received the same volume of normal saline solution. The mean arterial blood pressure (MAP) and blood gas concentrations were measured in all four groups. MicroPET was performed 4 h following HCl IT and the lungs were excised for histopathological examination. The rats in the LPS-HCl group exhibited a higher arterial PaO2 and a lower arterial PaCO2 compared with the rats in the remaining groups. The MAP decreased markedly in the LPS-HCl group, but remained stable in the LPS, HCl and NS groups. MicroPET results identified that the region of interest ratio in the LPS-HCl group (9.00±1.41) was significantly higher compared with those in the LPS (4.01±0.60) and HCl (3.33±0.55) groups (P<0.01). In addition, histological examination showed that the mean lung injury score in the LPS-HCl group (12.70±0.95) was significantly higher compared with those in the HCl (8.40±1.26) and LPS (7.00±0.82) groups (P<0.01). The present study demonstrates that LPS pretreatment significantly magnifies and prolongs the inflammatory response to subsequent acid IT in the lungs. Moreover, it is simpler to induce ALI using the two-hit model than with the one-hit model, and [18F]FDG microPET is a useful tool for evaluating the inflammatory reaction during ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call