Abstract

Tunnels are structures which have vital roles in the development of societies. In the numerical models of underground cavities, such as tunnels, loading due to zone elimination is induced instantaneously in the soil mass, and it might cause a disturbance in the stress state especially around the excavation area. However, this is not compatible with the principles of elastoplastic constitutive models used in soil behavior simulations. Besides, the predicted load on the tunnel liner will be larger than the actual value in this kind of modeling. In other words, it causes the so-called overestimated design. Using an appropriate constitutive model could lead the numerical analyses to accurate results. In this research, loading increment in the simulation of soil behavior is evaluated according to experimental data. Next, a correct way for numerical simulation related to underground excavation is described according to gradually eliminating (incremental) stress around tunnels based on the numerical modeling in the finite-difference code called FLAC. Hence, the effect of releasing the stress on the results is illustrated by the stress paths and deformations around a tunnel. Finally, the installation time of the tunnel liner and its impact on the numerical results are considered based on some experimental and field data. It is concluded that the use of software default in modeling the tunnel issues might lead to extreme oscillations in the stress paths, and it could affect the numerical results. Therefore, it is reasonable to utilize a proper way to release the stress around the excavation area gradually.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call