Abstract
Probabilistic safety assessment (PSA) uses a systematic approach to estimate the reliability and risk of a nuclear power plant (NPP). Over the past few years, severe accident management guidance (SAMG), which delineates the mitigation actions of core melt accidents of an NPP, has been developed to support operators and staff in the technical support center in dealing with those misfortunes. It can be expected that the implementation of SAMG will lower the containment failure frequency and reduce the amount of radionuclides released to the environment during the accident. The plant studied is the Maanshan NPP of Taiwan Power Company, which employs a Westinghouse-designed three-loop pressurized water reactor (PWR) with large dry containment.The containment system event trees and containment phenomenological event trees of the Level-2 PSA model are modified to incorporate the new mitigation actions specified in SAMG. The HCR (Human Cognitive Reliability) and THERP (Technique for Human Error Rate Prediction) models are used to quantify the human error probability (HEP) of all the actions in the Level-2 PSA model. The MAAP4 (Module Accident Analysis Program version 4) code is used to perform thermohydraulic calculations to determine the demand time required in the HEP analysis.The results show that the frequency of most of the source term categories is reduced except the one in which both the reactor pressure vessel and containment are intact. The containment failure frequency is reduced by 14.8% after the implementation of SAMG. The frequency of containment early failure is reduced by 16.2%. Most of the reduction in the containment early failure frequency comes from the reduction in the induced steam generator tube rupture (STGR). The frequency of induced SGTR was reduced from 2.3 × 10–7/reactor·yr to 1.0 × 10–8/reactor·yr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.