Abstract

We explored the possibility that the cytosine DNA methylation might be regulated by S-adenosyl-L-methionine (AdoMet) and S-adenosyl-L-homocysteine (AdoHcy) pools in plant cells. In order to change the AdoHcy/AdoMet ratio (methylation index), (S)-9-(2,3-dihydroxypropyl)adenine was employed, a selective reversible inhibitor of cellular S-adenosyl-L-homocysteine hydrolase. Micromolar concentrations of the inhibitor increased dramatically (more than 1000-fold) intracellular AdoHcy levels (and concominantly the AdoHcy/AdoMet ratio) in tobacco TBY-2 cells. No toxic effect of the drug was observed and the cells displayed only marginal inhibition of growth at high AdoHcy levels. At near equal intracellular concentrations of AdoHcy and AdoMet, a significant reduction of cytosine methylation in transcribed (5SrDNA) and non-transcribed (HRS60, NTRS) sequences was observed. Interestingly, the CpCpG and CpApG trinucleotide targets appeared to be most sensitive to changes in the methylation index. Methylation of cytosine residues at CpG sites was not affected even at AdoHcy/AdoMet ratio of > 10. These results support the possible regulation of DNA methylation via AdoHcy/AdoMet metabolic pathways in plant cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.