Abstract
BackgroundThe n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. However, fish also contains methylmercury, which influences the risk of myocardial infarction, possibly by generating oxidative stress. Methylmercury is metabolized by conjugation to glutathione, which facilitates elimination. Glutathione is also an antioxidant. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would thus benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction.MethodsPolymorphisms in glutathione-synthesizing (glutamyl-cysteine ligase catalytic subunit, GCLC and glutamyl-cysteine ligase modifier subunit, GCLM) or glutathione-conjugating (glutathione S-transferase P, GSTP1) genes were genotyped in 1027 individuals from northern Sweden (458 cases of first-ever myocardial infarction and 569 matched controls). The impact of these polymorphisms on the association between erythrocyte-mercury (proxy for methylmercury) and risk of myocardial infarction, as well as between plasma eicosapentaenoic+docosahexaenoic acid and risk of myocardial infarction, was evaluated by conditional logistic regression. The effect of erythrocyte-selenium on risk of myocardial infarction was also taken into consideration.ResultsThere were no strong genetic modifying effects on the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction risk. When eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury were divided into tertiles, individuals with GCLM-588 TT genotype displayed a lower risk relative to the CC genotype in all but one tertile; in most tertiles the odds ratio was around 0.5 for TT. However, there were few TT carriers and the results were not statistically significant. The results were similar when taking plasma eicosapentaenoic+docosahexaenoic acid, erythrocyte-selenium and erythrocyte-mercury into account simultaneously.ConclusionsNo statistically significant genetic modifying effects were seen for the association between plasma eicosapentaenoic+docosahexaenoic acid or erythrocyte-mercury and risk of myocardial infarction. Still, our results indicate that the relatively rare GCLM-588 TT genotype may have an impact, but a larger study is necessary for confirmation.
Highlights
The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction
* Correspondence: karin.broberg@med.lu.se 1Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden Full list of author information is available at the end of the article indicate that the relatively rare glutamylcysteine ligase modifier subunit (GCLM)-588 The variant homozygotes (TT) genotype may have an impact, but a larger study is necessary for confirmation
We evaluated whether the effect of erythrocyte total mercury concentration (Ery-High mercury (Hg)) on myocardial infarction (MI) risk was modified by genotype (IV in Figure 1), when adjustments were done for P-eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) and ErySe
Summary
The n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, which are present in fish, are protective against myocardial infarction. Individuals with certain polymorphisms in glutathione-related genes may tolerate higher exposures to methylmercury, due to faster metabolism and elimination and/or better glutathione-associated antioxidative capacity. They would benefit more from the protective agents in fish, such as eicosapentaenoic+docosahexaenoic acid and selenium. The objective for this study was to elucidate whether genetic polymorphisms in glutathione-related genes modify the association between eicosapentaenoic+docosahexaenoic acid or methylmercury and risk of first ever myocardial infarction. High Hg levels in erythrocytes (Ery-Hg; proxy for MeHg) have been associated with a decreased risk of MI in some studies [4,5] This discrepancy between studies and populations may partly be explained by different MeHg exposure levels in different studies. Protective agents include the n-3 polyunsaturated long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (their sum referred to as EPA+DHA), which has antiatherogenic, antithrombotic and antiarrhythmic properties [8,9], as well as selenium (Se), which may protect against MI due to its presence in the antioxidant enzyme glutathione peroxidase
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.