Abstract
AbstractThe aim of the study was to evaluate the possibility of applying different methods of data mining to model the inflow of sewage into the municipal sewage treatment plant. Prediction models were elaborated using methods of support vector machines (SVM), random forests (RF), k-nearest neighbour (k-NN) and of Kernel regression (K). Data consisted of the time series of daily rainfalls, water level measurements in the clarified sewage recipient and the wastewater inflow into the Rzeszow city plant. Results indicate that the best models with one input delayed by 1 day were obtained using the k-NN method while the worst with the K method. For the models with two input variables and one explanatory one the smallest errors were obtained if model inputs were sewage inflow and rainfall data delayed by 1 day and the best fit is provided using RF method while the worst with the K method. In the case of models with three inputs and two explanatory variables, the best results were reported for the SVM and the worst for the K method. In the most of the modelling runs the smallest prediction errors are obtained using the SVM method and the biggest ones with the K method. In the case of the simplest model with one input delayed by 1 day the best results are provided using k-NN method and by the models with two inputs in two modelling runs the RF method appeared as the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.