Abstract

RADA 16-I is an ionic self-assembling peptide that can form macroscopic scaffolds through β-sheet structures which are used in favor of cell growth and tissue engineering. This peptide has also the ability to stop bleeding effectively and quickly (∼20 seconds) when applied directly to the injuries. This study is focused on coagulation process, platelet aggregation, C3 and C4 concentrations, CBC counting, hemolysis, and white blood cell morphology tests to analyze hemocompatibility of RADA 16-I at different concentrations - 0.1, 0.2, 0.3 and 0.5%. According to the results, RADA 16-I hydrogel decreased the number of blood cells, slightly increased clot formation time and platelet aggregation, and yielded negligible hemolysis and only small changes in C3 and C4 concentrations and white blood cell morphology. All by all, the in vitro tests of hemocompatibility showed no perturbation in the blood composition when the peptides were in contact with the blood. The observed rapid hemostasis might be a result of increasing local concentrations of molecules involved in the formation of clot near the peptide hydrogel, thereby making a barrier which ended up with complete hemostasis. In conclusion, our experiments strongly supported further development of biomaterials based on RADA 16-I peptide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.