Abstract

We focus on a recently suggested approach to the calculation of critical cooling rates for glass formation. It is a “random parameterization” method that is guided by a limited number of isothermal scanning calorimetry experiments. However, several assumptions have been made in its derivation that may not mirror the actual crystallization behavior of most supercooled liquids, which may jeopardize the estimation of glass forming ability. We evaluate those assumptions and the applicability of the method is tested for lithium disilicate glass (which displays moderate internal nucleation rates) and dibarium titanium silicate glass (which displays very high internal nucleation rates, similar to those of metallic glasses). Both glasses nucleate homogeneously and exhibit polymorphic crystallization. Our calculations show that some overlooked variables, such as the sample geometry, nucleation induction-times, surface crystallization and the breakdown of the Stokes–Einstein/Eyring equation, have significant roles on the calculated time–temperature–transformation curves during heating experiments. We demonstrate that the proposed random parameterization method can only be used when a glass forming liquid that undergoes internal crystallization is cooled from above its liquidus to various test temperatures. If the sample undergoes predominant surface crystallization or if it is heated to the test temperature several corrections must be made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.