Abstract

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.

Highlights

  • Photogrammetry is presently a widely used method, in combination with the Structure from Motion (SfM) technique

  • Moderately priced unmanned aerial vehicle (UAV) quadrocopters with GNSS RTK technology have come to the market

  • Given the results reported for this UAV, we focused on the vertical component

Read more

Summary

Introduction

Photogrammetry is presently a widely used method, in combination with the Structure from Motion (SfM) technique. This combination allows the capture of surfaces in the form of point clouds (and derived products such as meshes, orthophotos, etc.), facilitating a relatively high degree of automation. The accuracy of multi-rotor UAV (Unmanned Aerial Vehicle) products is very important and is addressed in several studies [1,2,3,4,5,6]. Moderately priced UAV quadrocopters with GNSS RTK technology have come to the market. The pioneer in this area is DJI Phantom 4 RTK (approximately 7500 Eur)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call