Abstract

In this paper, we formulated, applied, and tested the FTn Finite Volume Method (FTn FVM) for transient radiative transfer in three-dimensional absorbing, emitting, and anisotropically scattering medium. Both the STEP and the Curved-Line Advection Method (CLAM) are introduced for spatial discretization of the transient radiative transfer equation. The results show that FTn FVM reduces largely the ray effects and it is more accurate than the standard FVM. Also, using both STEP and CLAM schemes, FTn FVM has smaller convergence time than the standard FVM for all cases. On the contrary, the STEP scheme is faster than the CLAM scheme but it has less accuracy. Then, the effects of optical thickness, scattering albedo, and anisotropy factor on incident radiation and radiative flux are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.