Abstract

The article proposes a method for evaluating the frost resistance of concrete at actual operating temperatures, using measurement results at temperatures that are regulated by current standards. Frost resistance was evaluated by determining the amount of water freezing at different temperatures, based on the measured adsorption isobars and the obtained relationship between the freezing temperature of water in concrete pores and relative humidity. A comparison of the calculated values of the frost resistance of concrete with those got based on direct measurements showed the adequacy of the calculation model. To get information about the frost resistance of concrete during unilateral freezing, a conductometric method was used to determine the kinetics of moisture diffusion and ice formation. It is shown that the use of this method allows one to establish the propagation speed of the ice formation and water diffusion front and the corresponding freezing depth of concrete samples depending on their capillary-porous structure and initial storage conditions. In general, the studies conducted allowed us to get a more reliable picture of the behaviour of concrete under alternating temperature load than is provided for by current regulatory documents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.