Abstract

The forward Compton scattering off the proton is determined by substituting the empirical total photoabsorption cross sections into dispersive sum rules. In addition to the spin-independent amplitude evaluated previously [Phys. Rev. D 92, 074031 (2015)], we obtain the spin-dependent amplitude over a broad energy range. The two amplitudes contain all the information about this process, and we, hence, can reconstruct the nonvanishing observables of the proton Compton scattering in the forward kinematics. The results are compared with predictions of chiral perturbation theory where available. The low-energy expansion of the spin-dependent Compton scattering amplitude yields the Gerasimov-Drell-Hearn (GDH) sum rule and relations for the forward spin polarizabilities (FSPs) of the proton. Our evaluation provides an empirical verification of the GDH sum rule for the proton, and yields empirical values of the proton FSPs. For the GDH integral, we obtain $204.5(21.4)$ $\mu$b, in agreement with the sum rule prediction: $204.784481(4)$ $\mu$b. For the FSPs, we obtain: $\gamma_0=-92.9(10.5) \times 10^{-6}$ fm$^4$, and $\bar{\gamma_0}=48.4(8.2) \times 10^{-6}$ fm$^6$, improving on the accuracy of previous evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.