Abstract

Mobility in single-grain and polycrystalline organic field-effect transistors (OFETs) is of interest because it affects the performance of these devices. While reasonable values of the hole mobility has been measured in pentacene OFETs, relatively speaking, our understanding of the detailed transport mechanisms is somewhat weak and there is a lack of precise knowledge on the effects of the materials parameters such as the site spacing, the localization length, the rms width of the density of states (DOS), the escape frequency, etc. This work attempts to analyze the materials parameters of pentacene OFETs extracted from data reported in the literature. In this work, we developed a model for the mobility parameter from first principle and extracted the relevant materials parameters. According to our analyses, the transport mechanisms in the OFETs are fairly complex and the electrical properties are dominated by the properties of the trap states. As observed, the single-grain OFETs having smaller values of the rms widths of the DOS (in comparison with the polycrystalline OFETs) also had higher hole mobilities. Our results showed that increasing the gate bias could have a similar but smaller effect. Potentially, increasing the escape frequency is a more effective way to raise the hole mobility and this parameter appears to be affected by changes in the molecular structure and in the degree of "disorder".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.