Abstract

BackgroundSugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock.ResultsThe objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield.The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg.ConclusionsUnder the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the alcohol-distilling industry due to more efficient ethanol production, reduced consumption of cooling water, and energy for ethanol distillation, as well as a decreased volume of fermentation stillage.

Highlights

  • Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars

  • The differences in the content of nitrogen compounds are probably related to the sugar beet varieties processed in sugar factories in Poland and Serbia [14], and to different sugar beet cultivation conditions and the technology used for processing it into thick juice (Table 1)

  • The chemical composition of the investigated thick juice makes this intermediate product of sugar beet processing an attractive feedstock for alcoholic fermentation

Read more

Summary

Introduction

Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. From an economic point of view and in comparison with cereals, sugar beet and beet-processing intermediates containing saccharose are very good raw materials for ethanol production due to their content of fermentable sugars (saccharose) [3,4]. The use of intermediate products of sugar beet processing as raw materials for bioethanol production could be attractive for distilleries located near the sugar factories, as it would minimize high transportation costs. Cooperation between these factories could lead to increased production and utilization of the capacity of both types of facilities

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call