Abstract

The main objective of this study was to evaluate the contribution of sorption to the removal of two commonly used antibiotics (amoxicillin and ciprofloxacin) from wastewater. These antibiotics are excreted in large quantities with more than 75% of them being unmetabolized and are therefore likely to end up in domestic wastewater in significant quantities. The specific objectives were to determine the sorption behavior in synthetic wastewater (SWW), the effect of pH and contribution of microbial surfaces, to the sorption of these antibiotics. The SWW, adjusted to various pH levels, was used and sorption kinetics conducted at 100 and 250 μg L−1 concentrations. Adsorption isotherms were determined at different pH levels. The SWW (pH 6.6) was inoculated with Rhodococcus sp. B30 strain to determine the contribution of microbial surfaces to sorption. Generally, both antibiotics revealed a decrease in sorption with pH increase, suggesting that lowering the solution pH of the wastewater may reduce their amounts in wastewater solution. Comparatively, ciprofloxacin exhibited higher sorption than amoxicillin. The sorption distribution coefficient (Kd) values for ciprofloxacin ranged from 0.4356 to 0.8902 L g−1, with pH = 5.5 exhibiting the highest Kd, while that for amoxicillin ranged from 0.1582 to 0.3858 L g−1 with the highest Kd at pH = 3.5. There was a significant difference (p < 0.05) in Kd values between various pH levels for both antibiotics except between the pH of 5.5 and 6.6. Both antibiotics were not degraded within 48 h by Rhodococcus sp. B30 strain. These results indicate that degradation may not be the major process of removal of compounds from wastewater treatment plants and hence the importance of sorption as an intervention technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call