Abstract

The excretion and metabolism of (+/-) [6-(3,4-dihydro-3-oxo-1,4[2H]-benzoxazine-yl)-2,3,4,5-tetrahydro-5-methylpyridazin-3-one] (bemoradan; RWJ-22867) have been investigated in male Long-Evans rats and female beagle dogs. Radiolabeled [14C] bemoradan was administered to rats as a singkle 1 mg/kg suspension dose while the dogs received 0.1 mg/kg suspension dose. Plasma (0-24 h; rat and dog), urine (0-72 h; rat and dog) and fecal (0-72 h; rat and dog) samples were collected and analyzed. The terminal half-life of the total radioactivity for rats from plasma was estimate to be 4.3 +/- 0.1 h while for dogs it was 7.5 +/- 1.3 h. Recoveries of total radioactivity in urine and feces for rats were 49.1 +/- 2.4% and 51.1 +/- 4.9% of th dose, respectively. Recoveries of total radioactivity in urine and feces for dogs were 56.2 +/- 12.0% and 42.7 V 9.9% of the dose, respectively. Bemoradan and a total of nine metabolites were isolated and tentatively identified in rat and dog plasma, urine, and fecal extracts. Unchanged bemoradan accounted for approimately < 2% of the dose in rat urine and 20% in rat feces. Unchanged bemoradan accounted for approximately 5% of the dose in urine and 16% in feces in dog. Six proposed pathways were used to describe the metabolites found in rats and dogs: pyridazinyl oxidations, methyl hydroxylation, hydration, N-oxidation, dehydration and phase II conjugations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call