Abstract

This paper sets forth a geomechanics framework for assessing the energy efficiency of rotary percussive drilling using the energy criterion, which has been proposed by Victor Oparin for volumetric destruction of high-stress rocks having nonuniform physico-mechanical properties. We review the long-term research and development in the specified area of science and technology, including research and development projects implemented at the Institute of Mining, Siberian Branch of the Russian Academy of Sciences. A new modified expression of Oparin's dimensionless energy criterion of volumetric rock destruction k is introduced. The range of in situ values is determined for the energy criterion of volumetric rock destruction at the optimized energy efficiency of rotary percussive drilling. The temporo-spatial intervals of geotechnical monitoring are found to control pneumatic drilling energy efficiency at subsoil use objects in Russia. The integrated experimental, theoretical and geotechnical approach to the comprehensive investigation of real-time processes of rock fracture in rotary percussive drilling using the energy concept possesses the necessary geomechanical performance-and-technology potential to create the next level geotechnical monitoring of drilling systems for various purposes, including determination of physico-mechanical properties and the stress-strain analysis of rock mass in full-scale drilling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.