Abstract
A theoretical study is conducted to evaluate the nucleation free energy of copper-vacancy clusters in Fe as a function of the numbers of copper atoms and of vacancies in a cluster. Using this free energy value, cluster nucleation processes during irradiation are investigated. The results clearly show that there are two different types of cluster nucleation paths on the free energy surface; one is the formation of empty voids by jumping over the ridge of the free energy surface, and the other corresponds to a path for the formation of copper clusters by going around the ridge. The dependence of easy nucleation paths on the damage rate is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.