Abstract
The commonly used methods for evaluating the endodontic apical seal, such as longitudinal and transversal section and diaphanization, show some operative difficulties and intrinsic limitation. This study suggests and describes a new method of analysis using a synchrotron radiation microtomography to analyse the root apex after post insertion, creating a three-dimensional image and analysing sections of the specimen every 5 μm. The study was performed at SYRMEP beam line at the Electra Synchrotron in Trieste using monochromatic X-rays of 32 KeV. Eleven monoradicular teeth were prepared using NiTi GT Rotary files instruments to an apical size 20 with conicity .06 and divided in four groups: in G1 ( n = 4 ) and G2 ( n = 2 ), the specimens were endodontically filled with guttapercha and a zinc-oxide sealer, in G3 ( n = 3 ) and G4 ( n = 2 ) guttapercha and a silicon-based sealer were used. An endodontic post was inserted in specimens of groups 1 and 3 following the manufacturer's instructions. Specimens were analysed using monochromatic X-rays of 32 KeV. A CCD detector with pixel dimension pf 5×5 μm 2 was used for the acquisition process. Seven hundred and twenty projections were performed over 180° range using a high-resolution rotator. The projections were reconstructed using standard algorithms for tomographic reconstruction. The apical infiltration was evaluated by verifying if black spots were detectable on the images. The specimens of groups 3 and 4 showed a better apical seal than the ones of groups 1 and 2. Post insertion, when a ZOE-based sealer is used, increases the apical gap even if it does not seem to be clinically relevant and sufficient to be a cause of endodontic failure. The new method for analysis appeared to be effective to detect small defects in endodontic obturation, analysing guttapercha–sealer and sealer–dentin interfaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.