Abstract
Several chiral reagents including cyclodextrins (CDs) and derivatives, crown ethers, proteins, chiral surfactants and polymers have been involved in dual selector systems for enantioseparation of a series of chiral compounds by capillary electrophoresis (CE). In comparison to the chiral reagents above-mentioned, there is no report concerning the use of polysaccharides in dual chiral CE system. In this paper we first investigate the enantioselectivity of polysaccharide-based dual selector systems towards some chiral drugs. During our recent work, glycogen belonging to the class of branched polysaccharides has been used as a novel chiral selector in CE. In this study, three glycogen-based dual chiral CE systems have been established for enantiomeric separations of several racemic basic drugs consisting of duloxetine, cetirizine, citalopram, sulconazole, laudanosine, amlodipine, propranolol, atenolol and nefopam. These three dual systems combined glycogen (neutral polysaccharide) with chondroitin sulfate A (CSA, ionic polysaccharide), β-CD and HP-β-CD, respectively. It was found that the dual system of glycogen/CSA exhibited good enantioselective properties toward the tested drugs. More importantly, compared to the single selector systems, synergistic effect was observed when glycogen was used with CSA for most of the analytes. This indicated the enhancement of enantioseparation observed for these analytes in glycogen/CSA system might be due to some favorable interaction effects between glycogen and CSA. Moreover, in order to evaluate the stereoselectivity of glycogen/CSA, the influences of buffer pH and selector concentration on enantioseparation of the studied drugs were also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.