Abstract

The purpose of this study was to evaluate the capacity of six contemporary self-etch primers/adhesives to demineralize ground enamel by means of ultrastructural analysis of the etching surface under SEM and by spectroscopic measurement of the percentage of calcium and phosphate ions dissolved. Seventy non-carious extracted human third molars were sub-divided into 2 groups of 35 teeth each. The teeth of the first group were ground to expose flat, polished enamel surfaces 3-4mm thick. The samples thus obtained were treated with six self-etch bonding systems and a phosphoric acid gel (control group). The self-etch priming agent was then eliminated and the etched enamel surface observed by SEM. From the teeth of the second group, disc-shaped specimens were made from ground enamel and subjected to application of each of the six self-etchants. Once the etching product had been rinsed off, the rinse solution was analyzed by atomic flame spectroscopy to evaluate the percentage of calcium and phosphate ions dissolved. SEM images show that AdheSE, Adper Prompt L-Pop and Xeno III, despite having a less intensive etching efficacy than phosphoric acid, gave a regular pattern over a considerable surface area and depth. iBond and One-Up Bond F gave less regular demineralization. For Clearfil SE Bond, the demineralization was ineffective. Results of the percentage of mineral loss show that Adper Prompt L-Pop and Xeno III were the most efficient self-etch products. AdheSE, iBond and One-Up Bond F, respectively exhibited decreasing demineralizing capacity. Clearfil SE Bond, however, gave low proportions of calcium and phosphate ions loss and was considered unsatisfactory. The action on enamel was not the same for all self-etch systems tested. The etching potential of the self-etch adhesives was lower than that of phosphoric acid but some self-etch systems, particularly those with monomers containing phosphate derivatives, gave results close to those obtained with phosphoric acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.