Abstract

Alternative techniques are presented for the evaluation of the electron momentum density (EMD) of crystalline systems from ab initio linear combination of atomic-orbitals calculations performed in the frame of one-electron self-consistent-field Hamiltonians. Their respective merits and drawbacks are analyzed with reference to two periodic systems with very different electronic features: the fully covalent crystalline silicon and the ionic lithium fluoride. Beyond one-electron Hamiltonians, a post-Hartree-Fock correction to the EMD of crystalline materials is also illustrated in the case of lithium fluoride.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.