Abstract

One of the most important problems in the plasmonics of the terahertz (THz) range, which is actively developing now, is the efficient generation of surface plasmon polaritons (SPPs). The simplest and most promising technological technique of photon excitation of THz SPPs is through diffraction of radiation on the edge of the conducting surface of the sample (the end-fire coupling technique). In this paper, we experimentally evaluated the efficiency of the generation of monochromatic THz SPPs (λ0 = 141 μm) by this method with a sample in the form of a cylindrical segment, the convex surface of which has a gold layer coated by zinc sulfide (ZnS) with thickness d = 0–2 µm. Such configuration of the surface supporting the SPPs not only shields the detector from parasitic bulk waves arising during diffraction but also enables one to change the distribution of the SPP field in the air by varying the coating layer thickness d. On an uncoated gold surface, the SPP generation efficiency was η ≈ 20%. In the presence of a ZnS layer on the gold, the SPP generation efficiency gradually increased with d, reached the maximum (ηmax ≈ 60%) at d ≈ 1 μm, and then gradually decreased. Theoretical analysis showed that the efficiency of the SPP generation can be raised up to 80% due to the selection of an optimal SPP field profile via variation of the thickness of the dielectric layer on the metal surface, as well as with optimal incidence of the focused radiation on the edge of the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.