Abstract
This study aims to evaluate the level of technical efficiency of companies that perform the integrated management of basic sanitation in Brazilian municipalities. A Multiple Data Envelopment Analysis (M-DEA) model was applied to estimate the performance of water supply and sewage services in municipalities covering more than of the Brazilian population, identifying the factors that most influence the efficiency of the sector in the years 2008 and 2016. The M-DEA methodology is an extension of Data Envelopment Analysis (DEA) with multiple DEA executions considering all combinations of inputs and outputs to calculate efficiency scores. The methodology reduces possible biases in the selection of resources and products of the model, ability to support decision-making in favor of improvements in the sector′s efficiency based on national regulatory framework. The analyses show that the companies analyzed can increase their operating results and attendance coverage by more than , given the current levels of infrastructure, human and financial resources in the sector. Based on the simulation of potential efficiency gains in Brazilian basic sanitation companies, the estimates show that the coverage of the population with access to sanitary sewage would go from the current to . The evidence found provides indications to subsidize sanitation management in the country at the micro-analytical level, enabling a better competitive position in the sector for the integrated management of basic sanitation and its universalization in Brazil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.