Abstract

Canine brucellosis is an infectious disease caused by the Gram-negative bacterium Brucella canis. Unlike conventional control programs for other species of the genus Brucella, currently there is no vaccine available against canine brucellosis, and preventive measures are simply diagnosis and isolation of infected dogs. New approaches are therefore needed to develop an effective and safe immunization strategy against this zoonotic pathogen. In this study, BALB/c mice were subcutaneously immunized with the following: (i) the recombinant Brucella Omp31 antigen formulated in different adjuvants (incomplete Freund adjuvant, aluminum hydroxide, Quil A, and Montanide IMS 3012 VGPR), (ii) plasmid pCIOmp31, or (iii) pCIOmp31 plasmid followed by boosting with recombinant Omp31 (rOmp31). The immune response and the protective efficacy against B. canis infection were characterized. The different strategies induced a strong immunoglobulin G (IgG) response. Furthermore, spleen cells from rOmp31-immunized mice produced gamma interferon and interleukin-4 (IL-4) after in vitro stimulation with rOmp31, indicating the induction of a mixed Th1-Th2 response. Recombinant Omp31 administered with different adjuvants as well as the prime-boost strategy conferred protection against B. canis. In conclusion, our results suggest that Omp31 could be a useful candidate for the development of a subcellular vaccine against B. canis infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.