Abstract

Lysyl oxidase-like (LOXL) is an extracellular enzyme that catalyses the cross-linking between microfibrils and tropoelastin (TE), thereby ensuring elastic fibre functionality. With ageing, LOXL expression decreases, thus participating in the loss of skin elasticity. In a previous study, we showed that a dill seed extract [INCI name: Peucedanum graveolens (Dill) extract] could increase LOXL expression in cultured dermal fibroblasts. Besides, we showed a good correlation between the measurements of skin elasticity obtained in vitro and in vivo using a fully automated bio-tribometer designed to measure the biomechanical properties of soft and complex materials like skin. The aim of this study was to evaluate the ability of the dill extract to improve skin elasticity in vitro and in vivo using different models. Using the bio-tribometer, we first showed that the lateral elasticity of dermis equivalents (DEs) treated with the dill extract at 1% was significantly increased by +29% (P < 0.01) when compared to untreated DEs. In vivo, skin firmness and elastic recovery measured using cutometry methods were also significantly improved compared to placebo in volunteers treated for 56 days with a formula containing 1% of dill extract. Moreover, the clinical evaluation evidenced significant improvements in 'skin elasticity' compared to placebo. A majority of subjects treated with the dill extract also noted significant improvements in skin elasticity, firmness and slackness of the jaw line. Finally, mean wrinkle area and length were also significantly reduced compared to placebo after 84 days as measured using silicone replicas taken from the crow's feet. In summary, this study showed that the dill extract could improve elasticity of DEs in vitro as well as skin biomechanical properties and appearance in vivo. It also highlights the relevance of using the bio-tribometer as an exploratory tool for the measurement of skin elasticity in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.