Abstract
Feedstuffs utilized in U.S. feedlot finishing rations incorporate high concentrations of N and P, with less than 15% of fed N and P retained by the animal. The remaining N and P are excreted in the manure, where the opportunity for manure N loss via ammonia (NH3) volatilization from the feedlot pen surface is a risk to the environment and lowers the value of manure as a fertilizer. Two nutrient mass balance experiments were conducted during the winter and summer seasons to evaluate the effects of spreading unprocessed Eastern red cedar biochar onto the feedlot pen surface on manure nutrient capture and cattle performance. A 186-d feedlot finishing experiment was conducted from December to June (WINTER) and a subsequent 153-d finishing experiment was conducted from June to November (SUMMER). The WINTER experiment evaluated three treatments (5 pens per treatment; 10 steers per pen), including biochar spread on pen surface during the feeding period (1.40 kg biochar/m2; 17.6 m2/steer soil surface of the pen), hydrated lime spread on pen surface at end of feeding period (1.75 kg/m2) and control (no treatment applied). The SUMMER experiment evaluated biochar treatment (1.40 kg biochar/m2; 5 pens per treatment; 8 steers per pen; and 22 m2/steer soil surface of the pen) against control. There were no differences in N and P intake, retention, or excretion (P ≥ 0.38) between WINTER treatments. Steer performance (P ≥ 0.10) and carcass characteristics (P ≥ 0.50) were not impacted by pen treatment in WINTER. Nitrogen and P intake and excretion (P ≥ 0.35) were not different between treatments in SUMMER and retention of N and P was significantly greater for the biochar treatment (P ≤0.04) due to greater ADG (P = 0.05). There was no difference in DMI (P = 0.48) in SUMMER, steers on biochar pen treatment had heavier HCW (P = 0.05) and greater ADG, resulting in a tendency for greater feed efficiency (P = 0.08). In both experiments, biochar addition to the pen surface tended (P = 0.07) to increase manure N as a percent of manure DM, but this increase in N concentration did not impact kg of N removed from the feedlot pens (P ≥ 0.15) or N losses (P ≥ 0.68). The addition of red cedar biochar to the feedlot pen surface did not increase manure nutrient capture of N or P and did not reduce N losses associated with soil-based feedlot pens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.