Abstract

The growth and Cr(VI) reduction by Shewanella oneidensis MR-1 was examined using a mini-bioreactor system that independently monitors and controls pH, dissolved oxygen (DO), and temperature for each of its 24, 10-mL reactors. Independent monitoring and control of each reactor in the cassette allows the exploration of a matrix of environmental conditions known to influence S. oneidensis chromium reduction. S. oneidensis MR-1 grew in minimal medium without amino acid or vitamin supplementation under aerobic conditions but required serine and glycine supplementation under anaerobic conditions. Growth was inhibited by DO concentrations >80%. Lactate transformation to acetate was enhanced by low concentration of DO during the logarithmic growth phase. Between 11 and 35 degrees C, the growth rate obeyed the Arrhenius reaction rate-temperature relationship, with a maximum growth rate occurring at 35 degrees C. S. oneidensis MR-1 was able to grow over a wide range of pH (6-9). At neutral pH and temperatures ranging from 30 to 35 degrees C, S. oneidensis MR-1 reduced 100 microM Cr(VI) to Cr(III) within 20 min in the exponential growth phase, and the growth rate was not affected by the addition of chromate; it reduced chromate even faster at temperatures between 35 and 39 degrees C. At low temperatures (<25 degrees C), acidic (pH < 6.5), or alkaline (pH > 8.5) conditions, 100 microM Cr(VI) strongly inhibited growth and chromate reduction. The mini-bioreactor system enabled the rapid determination of these parameters reproducibly and easily by performing very few experiments. Besides its use for examining parameters of interest to environmental remediation, the device will also allow one to quickly assess parameters for optimal production of recombinant proteins or secondary metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.