Abstract

The effects of plasma nitriding (PN) temperature and time on the structural and tribological characterisation of Ti 6Al 4V alloy were investigated. PN processes under gas mixture of N2/H2 = 4 were performed at temperatures of 700, 750, 800 and 850 °C for duration of 2, 5 and 10 h. Cross section and surface characterisation were evaluated by means of SEM, AFM, XRD and microhardness test techniques. Dry wear tests were performed using a pin on disc machine. Mass loss and coefficient of friction were measured during the wear tests. Three distinguished structures including of a compound layer (constituted of δ-TiN and ɛ-Ti2N), an aluminium-rich region and a diffusion zone (interstitial solid solution of nitrogen in titanium) were detected at the surface of plasma nitrided Ti 6Al 4V alloy. These structures increased surface hardness of Ti 6Al 4V alloy significantly and gradually distributed the hardness from the surface to the substrate. The "surface hardness", "surface roughness", "wear resistance" and "coefficient of friction" of the alloy were increased due to plasma nitriding process. Moreover, rising both process temperature and time led to increasing of "layers thicknesses", "surface hardness", "surface roughness", "dynamic load-ability" and "wear resistance" of Ti 6Al 4V alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call