Abstract
This work investigated effects of implementing the Delta4 Discover diode transmission detector into the clinical workflow. PDD and profile scans were completed with and without the Discover for a number of photon beam energies. Transmission factors were determined for all beam energies and included in Eclipse TPS to account for the attenuation of the Discover. A variety of IMRT plans were delivered to a Delta4 Phantom+ with and without the Discover to evaluate the Discover's effects on IMRT QA. An imaging QA phantom was used to assess the detector's effects on MV image quality. OSLDs placed on the Phantom+ were used to determine the detector's effects on superficial dose. The largest effect on PDDs after dmax was 0.5%. The largest change in beam profile symmetry and flatness was 0.2% and 0.1%, respectively. An average difference in gamma passing rates (2%/2mm) of 0.2% was observed between plans that did not include the Discover in the measurement and calculation to plans that did include the Discover in the measurement and calculation. The Discover did not significantly change the MV image quality, and the largest observed increase in the relative superficial dose when the Discover was present was 1%. The effects the Discover has on the linac beam were found to be minimal. The device can be implemented into the clinic without the need to alter the TPS beam modeling, other than accounting for the device's attenuation. However, a careful workflow review to implement the Discover should be completed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.