Abstract

Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol.

Highlights

  • Erythritol, a four carbon polyol, is a sugar abundant in bovine placental tissues

  • The ability to catabolyze erythritol preferentially over other sugars by bacteria of the genus Brucella has been recognized from long time ago and has been associated to the capability to induce abortions in infected ruminants [1]

  • The pathway for erythritol degradation in Brucella was elucidated by Sperry and Robertson by using radiolabelled compounds [3] and the genes organized in an operon for erythritol catabolism in B. abortus have been identified and characterized in our laboratory [4]

Read more

Summary

Introduction

Erythritol, a four carbon polyol, is a sugar abundant in bovine placental tissues. The ability to catabolyze erythritol preferentially over other sugars by bacteria of the genus Brucella has been recognized from long time ago and has been associated to the capability to induce abortions in infected ruminants [1]. To provide a better understanding of the role of erythritol metabolism in Brucella, global gene expression of virulent strain B. abortus 2308 has been evaluated in the presence or absence of erythritol in the growth medium.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call