Abstract

Chairside polishing kits are an alternative to laboratory polishing techniques. The effects of using a chairside polishing kit on a three-dimensional (3D)-printed acrylic denture base (ADB) have not been reported previously. Thus, this study aimed to evaluate the effects of different chairside polishing techniques on the surface characterizations of ABD, including surface roughness average (Ra), average maximum profile height (Rz), and scanning electron microscopy (SEM) representations. One hundred and twenty disc-shaped specimens were fabricated from one conventional heat-polymerized (HP) ADB resin and two 3D-printed (Asiga (AS) and NextDent (ND)) ADB resins (n = 40 per material). Each group was further divided based on the polishing protocol (n = 10) as follows: conventional polishing protocol (C), microdont chairside polishing kit (M), shofu chairside polishing kit (S), and an unpolished group (U). The Ra and Rz values were measured using an optical profilometer. Two-way ANOVA and post hoc tests were used for data analysis (α = 0.05) at significant levels. In unpolished groups, there was a statistically significant difference between HP-U vs. AS-U and ND-U groups (p < 0.0001). For Ra, the lowest values were observed in HP-C, AS-S, and ND-C. While the highest values were shown in all unpolished groups. Within the material, there were statistically significant differences between the three polishing protocols (C, M, and S) vs. unpolished (p < 0.0001), while there was no significant between C, M, and S groups (p = 0.05). The Rz values had the same pattern as the Ra values. The two chairside polishing kits were comparable to conventional polishing techniques, and they can be recommended for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call