Abstract

Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

Highlights

  • These days, there are many concerns related to industrial by-products because of their harmful effects on the environment and energy consumption

  • The solid phase of concrete is composed of several components, i.e., calcium-silicate-hydrate (C-S-H) and calcium hydroxide (CH); the main objective of this study was to clarify the effect of different aggregates on concrete properties as well as their pore characteristics with the binder assumed to be a single phase for simplicity

  • This reflects the influence of the shape of crushed glass with the the angularity of the aggregate significantly affecting workability as a result of mechanical interlocking of the particles

Read more

Summary

Introduction

These days, there are many concerns related to industrial by-products because of their harmful effects on the environment and energy consumption. Many efforts have been undertaken to find a way to reduce these negative effects and to enhance sustainability in technical and economic terms [1]. In the building and civil engineering fields, the amount of waste material is increasing continuously with developments in the construction industry. Building materials, such as concrete, are the most widely produced materials in the world, and the utilization of waste materials as concrete ingredients is being strongly promoted [2].

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call