Abstract

Crude glycerol (CG), a by‐product from biodiesel production, is a carbon source with potential as feedstock for polyhydroxyalkanoate (PHA) production. PHAs are biological macromolecules synthesized by microorganisms as intracellular carbon and energy storage granules. PHA production and its properties were investigated using Cupriavidus necator IPT 029 and Bacillus megaterium IPT 429 cultivated with CGs from different origins. The highest PHA extraction percentage (71.56% [w/v]) occurred when C. necator IPT 029 metabolized CG 3 (from the processing of biodiesel from castor bean oil). The gas chromatography–mass spectrometry analyses revealed novel PHA constituents as building blocks of medium (3‐hydroxytetradecanoate) and long (11‐hydroxyoctadecanoate) chains. Molar mass distribution revealed range of 121–6900 kDa. The initial degradation temperature ranged from 181.83 to 287.50°C and the crystallinity ranged from 35.30 to 66.70%. The results obtained indicate that C. necator IPT 029 from CG 3 could produce copolymers with industrially applicable thermophysical properties. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call