Abstract

Gas cooking is an important source of airborne particulate matter (PM) indoors. Exposure to cooking-derived PM can lead to adverse human health impacts on non-smokers, especially in poorly-ventilated residential homes. Most of the previous studies on gas cooking emissions mainly focused on fine particles (PM2.5) with little information on their size-fractionation. Moreover, studies dealing with mitigation of indoor human exposure to cooking-derived PM are currently sparse. Therefore, a systematic study was conducted to investigate the characteristics of PM2.5 and size-fractionated PM derived from five commonly used cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying in a poorly-ventilated domestic kitchen under controlled experimental conditions. Additionally, an indoor portable air cleaner was employed as a mitigation device to capture cooking-derived PM and improve indoor air quality (IAQ). Results revealed that the oil-based deep-frying cooking released the highest airborne particles which were about 170 folds higher compared to the baseline levels for PM2.5 mass concentrations. The use of the air cleaner showed a statistically significant (p < 0.05) reduction in the indoor PM2.5 levels. Moreover, PM<0.25 (particles with diameter ≤ 250 nm) showed a very high mass concentration (378.2 μg/m3) during deep-frying, raising human health concern. A substantial reduction (~60–85%) in PM<0.25 mass concentrations and their total respiratory deposition doses (RDD) in the human respiratory tract was observed while using the air cleaner during the five cooking methods. Furthermore, morphological characteristics and the relative abundance of trace elements in cooking-derived PM were also investigated. This study provides useful insights into the assessment and mitigation of indoor human exposure to cooking-derived PM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call