Abstract

Maxwell’s concept of an equivalent inhomogeneity is employed for evaluating the effective elastic properties of tetragonal, fiber-reinforced, unidirectional composites with isotropic phases. The microstructure induced anisotropic effective elastic properties of the material are obtained by comparing the far-field solutions for the problem of a finite cluster of isotropic, circular cylindrical fibers embedded in an infinite isotropic matrix with that for the problem of a single, tetragonal, circular cylindrical equivalent inhomogeneity embedded in the same isotropic matrix. The former solutions precisely account for the interactions between all fibers in the cluster and for their geometrical arrangement. The solutions to several example problems that involve periodic (square arrays) composites demonstrate that the approach adequately captures microstructure induced anisotropy of the materials and provides reasonably accurate estimates of their effective elastic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call