Abstract

Non-aqueous precipitating amine systems for carbon capture allows for CO2 desorption at lower temperatures than conventional aqueous amine systems and can potentially reduce the energy requirement for regeneration. In this work, the influence of water accumulation that may arise from humid gases entering the absorption column was investigated for absorption systems containing 2-amino-2-methyl-1-propanol (AMP) and dimethyl sulfoxide (DMSO). The physical solubility of CO2 decreased with increasing water concentration, as expected from the lower solubility of CO2 in water than in DMSO. The CO2 loading capacity was increased with the addition of water, resulting from formation of bicarbonate with water present in the system. Low lean loadings of 0.1 mol CO2/mol AMP and precipitation was observed in 23 wt% AMP/DMSO with 9 wt% added water, suggesting that some water accumulation might be tolerable while still maintaining the desired properties of the absorption system. NMR was used to study the CO2 reaction products at 30–88 °C. The results suggested that 88 °C can be used for regeneration of the system even with water accumulated in the system. At 80 °C formation of the tentatively assigned species 4,4-dimethyl-1,3-oxazolidin-2-one was observed, indicating that thermal degradation of AMP may occur above this temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.