Abstract

The combination of magnesium alloys with the expendable pattern casting (EPC) process will bring a bright future for the application of magnesium alloys. Vacuum is a pre-requisite parameter in the EPC process of magnesium alloys, because without vacuum, the fluidity of the magnesium alloy in the EPC process is too poor to fill the mold completely, especially for the thin-section castings. In this investigation, the effect of vacuum on the fluidity of AZ91 magnesium alloy has been explored. A modified model has been presented to explain the effect of vacuum on mold filling, which was verified by optical microscopy. The results obtained indicate that vacuum is the most effective parameter in improving the fluidity, the effect of vacuum on the fluidity interacting strongly with the pouring temperature and coating. Vacuum greatly changes the mass and heat transfer in the EPC process. Vacuum may not only control the profile of the metal–foam interface, which will influence the mass transfer process, but may also greatly speed up the removal rate of pattern decomposition products at the metal–coating interface. It also changes the primary heat-transfer mode to heat convention, which has a great influence on the distribution of the casting temperature field and solidification process. The microstructures of castings cast with vacuum exhibit a fine grain size and a small amount of precipitated Mg 17Al 12, but vary insignificantly with the location in the castings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.