Abstract

Tamping is one of the major activities undertaken by railway maintenance managers to recover the track geometry condition. Modelling the effectiveness of tamping along with track geometry degradation is essential for long-term prediction of track geometry behaviour. The aim of this study is to analyse the effect of tamping on the different track geometry measurements, i.e. longitudinal level, alignment and cant, based on inspection car records from a part of the Main Western Line in Sweden. To model recovery after tamping, a probabilistic approach is applied. The track geometry condition before tamping was considered as the dominant factor for modelling the model parameters. Correlation analysis was performed to measure the linear relation between the recoveries of the different geometry measures. The results show a moderate correlation between the recovery of the longitudinal level and that of the cant, and a weak correlation between the recovery of the longitudinal level and that of the alignment. Linear regression and Wiener process were also applied to model track geometry degradation and to obtain degradation rates. The effect of tamping on degradation rate was analysed. It was observed that degradation rate increased after tamping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.