Abstract
The influence of hardwood charcoal particles (HWCP) on some mechanical properties and surface morphology of polyester matrix composites (PMC) was investigated in this work. The polyester base matrix was reinforced with varying weight fraction of HWCP. The composites developed were subjected to impact and hardness tests respectively. The morphological characteristics, elemental characterization and quantification of the synthesized composites were also evaluated. From the results, it is revealed that the composites reinforced with the largest particle sized hardwood charcoal (300 μm) absorbed high impact energy before fracture. However, the composites with lower particle sizes (75, 150 & 250 μm) recorded a high hardness values with increasing weight percent of reinforcements incorporated in the polyester matrix composite. These higher values obtained were attributable to better interfacial bonding due to better mechanical interlocking between the HWCP and polyester resin. The EDX results indicated an increase in the contents of calcium, silicon, potassium and aluminium in the reinforced polyester matrix composites. SEM image show the homogeneous distribution of the reinforcement particles in the majorly carbon matrix phase and increased surface roughness of the reinforced polyester matrix composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.