Abstract

In many aquatic species, alteration of habitats and human-induced barriers shape the population’s genetic structure in rivers with longitudinal connectivity. The golden mahseer, Tor putitora (GM) is an endangered and sensitive cyprinid species. It is considered an indicator of a healthy freshwater ecosystem and is found in cold-water habitats. Therefore, it is crucial to understand how longitudinal connectivity and anthropogenic factors affect the diversity and population genetic structure of GM. The population genetic structure, gene flow and demography of the GM in four Himalayan rivers were investigated by mitochondrial cytochrome b gene (cyt b) as well as microsatellite genotyping. The results showed overall high mtDNA diversity (hd: 0.795) couple with low nucleotide diversity (π: 0.0012) in all GM populations. We also found significant levels of observed heterozygosity (ranging from 0.618 to 0.676), with three genetic clusters. The mtDNA and microsatellite analysis suggested that there are close genetic relationships between the Bhagirathi and Ganga populations; whereas, significant level of genetic differentiation was observed with that of Alaknanda and Yamuna populations. Haplotype distribution, unimodal distribution graph and results of the neutrality test indicated a sign of recent population growth in the GM population. Analysis of molecular variance (AMOVA) and spatial molecular variance (SAMOVA) revealed existence of genetic structures in GM populations. In addition, spatial genetic analysis detected a significant correlation between the pairwise genetic and geographical distances for the entire study area (Mantel test, rM = 0.126; P = 0.010). Considering the significant level of heterozygosity, high rate of unidirectional migration and the intra-population structuring in Alaknanda and Yamuna, it is crucial to propose an effective conservation plan for the GM populations. In general, dams obstruct continuous water flow and create isolated microhabitats. Therefore, we recommend the establishment of microscale protected areas near GM breeding sites and construction of fish pass to maintain the genetic connectivity of fish species that enhance viable populations.

Highlights

  • The Himalayan riverine region has a rich diversity of species and unique bio-geographic features

  • When a species has adapted to a particular habitat, it often becomes restricted to a small patchy habitat, with limited gene flow [4]

  • We have assessed the genetic diversity, population genetic structure, gene flow, and demography of GM based on mtDNA and microsatellite markers

Read more

Summary

Introduction

The Himalayan riverine region has a rich diversity of species and unique bio-geographic features. The Ganga and Yamuna, the major Himalayan rivers, have been designated a lifeline of India. They flow from the Western Himalaya and converge at Triveni Sangam, Prayagraj, Uttar Pradesh and drain into the Bay of Bengal. Hydro-power development and construction of dams and barrages in the Himalaya have significantly affected the natural habitat, abundance, and population structure of aquatic animal species over the last 45–50 years [1,2,3,4]. Understanding the genetic structure in continuous habitats is essential for determining the effects of these barriers on the genetic diversity and gene flow in populations and developing appropriate conservation programs [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.