Abstract

Gentamicin is an aminoglycosidic antibiotic widely used in the treatment of many gram-negative bacterial infections. The present study was designed to investigate the extent of nephrotoxicity and the degree of protection afforded by lipoic acid under E. coli infected conditions and to note its effect on the antimicrobial activity of gentamicin. The study was carried out with adult male albino rats of Wistar strain. Group I animals served as controls. Group II animals were injected intraperitoneally for 2 successive days with 0.2 ml inoculum containing 10(10)) colony forming units of E. coli. Group III animals were injected E. coli as those in group II, in addition gentamicin 100 mg kg(-1) was administered intraperitoneally for 10 successive days. Group IV animals received intraperitoneal injections of E. coli as above plus gentamicin and also received lipoic acid (25 mg kg(-1)) for 10 days by oral gavage. Rats subjected to E. coli administration showed a decline in the thiol content of the cell accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase and glutathione peroxidase with an added effect observed when gentamicin was administered along with it. The extent of nephrotoxicity induced by gentamicin was clearly evident with the decline in the activities of lactate dehydrogenase, alkaline phosphatase and N-acetyl-beta-D-glucosaminidase in the rat renal tissues. A significant decrease was also observed in the activities of the transmembrane enzymes upon gentamicin administration. Treatment with lipoic acid decreased lipid peroxidation thereby maintaining the antioxidant status of the cell. The activities of the renal and transmembrane enzymes were also restored on lipoic acid treatment. The study has highlighted the beneficial effects of lipoic acid against experimental aminoglycoside toxicity in rats rendered bacteremic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.