Abstract

Hydrated lime is often used as a mineral filler or antistripping additive in hot-mix asphalt (HMA). Many agencies across North America require the use of lime in all HMA mixtures being placed on high-volume roadways. Despite this wide use of lime, its effects on the HMA mixture dynamic modulus (E*) stiffness have rarely been evaluated. The new mechanistic–empirical (M-E) pavement design guide, Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures, developed under NCHRP Project 1–37A uses E* as the primary material property of asphalt mixtures for the HMA characterization. A comprehensive study was completed at Arizona State University to assess the effect of lime addition on the E* stiffness of HMA mixtures. The study demonstrated that the standard test and design methodologies of the new M-E pavement design guide could be used effectively for lime-modified HMA mixes. With these methodologies, hydrated lime was found to increase the E* of HMA mixtures by 17% to 65% across the range of mixtures, lime contents, and temperature, with an overall average of 25% increase found from 17 mixture–lime percentage combinations across six different HMA mixes. This paper also outlines a provisional protocol for evaluating the E* master curve for lime-modified HMA mixtures using any of the three hierarchical levels found in the new NCHRP Project 1–37A pavement design guide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call