Abstract

The forkhead box O family (FOXO) is expressed ubiquitously in a spatio-temporal manner and plays a key role in cellular metabolism, senescence, and aging. Genetic mutations in FOXO lead to metabolic diseases and cancer,and affect the longevity of individuals. Our study investigated how the genetic risk of type 2 diabetes mellitus (T2DM) altered due to an intronic variant rs13217795 of the longevity-associated FOXO3 gene in the geriatric population of North India. Genotypic characteristics of rs13217795 were determined among 347 age sex-matched (177 diabetic cases, 170 healthy controls) elderly individuals by TaqMan SNP assays after clinical assessment. Clinical chemistry and circulating cytokines level were assessed by biochemical and immunoassays. Genotype frequencies were not significantly (p = 0.526) different between cases and controls. The minor allele (C) frequency in diabetic cases and controls was 0.47 and 0.49, respectively (OR = 0.94, 95% CI = 0.69–1.26, p > 0.05). The minor allele was associated with lower fasting plasma glucose (FPG), fasting insulin, HOMA-IR, CRP, TNF-α, and IL-6 (p < 0.05). The homozygous minor allele carriers showed significantly lower levels of FPG, HOMA-IR, and TNF-α in T2DM patients. The minor allele (C) of intronic polymorphism in FOXO3 (rs13217795: T/C) confers the protective role characterized by its association with a decrease in glycemic and insulin resistance and proinflammatory markers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.