Abstract

In this paper, the problem of studying the dynamics of transverse vibrations of plate, taking into account the elastic dissipative characteristics of the hysteresis type in conjunction with a liquid section dynamic absorber under the influence of kinematic excitations. In the differential equations of motion, the elastic dissipative characteristics of the plate material of the hysteresis type are taken into account by means of harmonic linearization coefficients based on the Pisarenko - Boginich hypothesis. The amplitude-frequency characteristic of the vibrating plate and the analytical expressions of the transfer function were determined using a differential operator from a system of differential equations of motion depending on the system parameters. In order to perform numerical calculations, the coefficients of the first three terms of the logarithmic decrement expression were found. In the amplitude interval, the function representing the vertical deviation of the amplitude-frequency characteristic decreases and the function representing the energy dissipation in the plate material increases. It has been shown that the efficiency of the liquid section dynamic absorber in quenching harmful plate vibrations at low frequencies can be evaluated based on the results of numerical calculations to ensure that the displacements of the plate point reach minimum values. Amplitude-frequency characteristics for plate points at different parameters were constructed for the distributed parametric system using the developed model and method. Recommendations for the selection of parameters of the system depending on the elastic dissipative and inertial properties are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call