Abstract
Dispersion munitions are often equipped with dispersive submunitions used to scatter bombs over a wide area, and one of the types of dispersive submunitions is the Magnus rotor, commonly referred to as a self-rotating flying body. The Magnus rotor is designed to be dispered over a wide area by utilizing the principle of the Magnus effect through self-rotation, and has various trajectories depending on the initial conditions from the mother dispersion munition. In this paper, an index to evaluate the dispersion uniformity of footprint of the dispersive submunition is presented and the dispersion uniformity according to various initial release conditions is evaluated, and it is getting larger with high incidence angle and get max value at certain initial angular velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Institute of Military Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.