Abstract

Dispersion munitions are often equipped with dispersive submunitions used to scatter bombs over a wide area, and one of the types of dispersive submunitions is the Magnus rotor, commonly referred to as a self-rotating flying body. The Magnus rotor is designed to be dispered over a wide area by utilizing the principle of the Magnus effect through self-rotation, and has various trajectories depending on the initial conditions from the mother dispersion munition. In this paper, an index to evaluate the dispersion uniformity of footprint of the dispersive submunition is presented and the dispersion uniformity according to various initial release conditions is evaluated, and it is getting larger with high incidence angle and get max value at certain initial angular velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call