Abstract

The rheological behavior of an Al-25 mass pct Si alloy, i.e., a hypereutectic Al-Si alloy, was investigated to determine its processability under semi-solid forming conditions. To measure the viscosity of the semi-solid alloy, a parallel-plate drop-forge viscometer similar to that devised by Yurko and Flemings was developed. Drop-forge experiments revealed that the viscosity initially decreased as the shear rate increased and subsequently increased as the shear rate decreased. Thus, the viscosity reached a minimum at approximately the maximum shear rate. The summarized relationship between the viscosity, μ [Pa s], and the shear rate, \( \dot{\gamma } \) [s−1], can be described by the power-law model μ = 1.78 × 107 \( \dot{\gamma } \) −1.5. The decrease in viscosity as a function of the shear rate derived from this equation depends on both the temperature and the applied force but not the duration of deformation. A convex curve was obtained when the effective duration of deformation, i.e., the actual compression time, was plotted as a function of the viscosity and the effective duration of deformation reached a maximum at approximately μ = 30 kPa s (\( \dot{\gamma } \) = 70 s−1). The origin of this profile can be attributed to a combination of both a moderate working time and an adequate deformation, which resulted from a decrease in the deformation resistance accompanied by a lowering of the viscosity. The viscosity at the maximum effective duration of deformation thus corresponds to the transition point for the change in the flow process dominant factor from plastic forming (forging) to casting. Therefore, the viscosity μ = 30 kPa s is believed to be the optimum viscosity for the semi-solid forming of the Al-25 mass pct Si alloy. The approximate temperature condition can be ranged from 855 K to 859 K (582 °C to 586 °C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.